Abstract:Currently, Large Language Models (LLMs) have achieved remarkable results in machine translation. However, their performance in multi-domain translation (MDT) is less satisfactory; the meanings of words can vary across different domains, highlighting the significant ambiguity inherent in MDT. Therefore, evaluating the disambiguation ability of LLMs in MDT remains an open problem. To this end, we present an evaluation and analysis of LLMs on disambiguation in multi-domain translation (DMDTEval), our systematic evaluation framework consisting of three critical aspects: (1) we construct a translation test set with multi-domain ambiguous word annotation, (2) we curate a diverse set of disambiguation prompting templates, and (3) we design precise disambiguation metrics, and study the efficacy of various prompting strategies on multiple state-of-the-art LLMs. Our extensive experiments reveal a number of crucial findings that we believe will pave the way and also facilitate further research in the critical area of improving the disambiguation of LLMs.
Abstract:In recent years, No-Reference Point Cloud Quality Assessment (NR-PCQA) research has achieved significant progress. However, existing methods mostly seek a direct mapping function from visual data to the Mean Opinion Score (MOS), which is contradictory to the mechanism of practical subjective evaluation. To address this, we propose a novel language-driven PCQA method named CLIP-PCQA. Considering that human beings prefer to describe visual quality using discrete quality descriptions (e.g., "excellent" and "poor") rather than specific scores, we adopt a retrieval-based mapping strategy to simulate the process of subjective assessment. More specifically, based on the philosophy of CLIP, we calculate the cosine similarity between the visual features and multiple textual features corresponding to different quality descriptions, in which process an effective contrastive loss and learnable prompts are introduced to enhance the feature extraction. Meanwhile, given the personal limitations and bias in subjective experiments, we further covert the feature similarities into probabilities and consider the Opinion Score Distribution (OSD) rather than a single MOS as the final target. Experimental results show that our CLIP-PCQA outperforms other State-Of-The-Art (SOTA) approaches.
Abstract:Text-to-3D generation has achieved remarkable progress in recent years, yet evaluating these methods remains challenging for two reasons: i) Existing benchmarks lack fine-grained evaluation on different prompt categories and evaluation dimensions. ii) Previous evaluation metrics only focus on a single aspect (e.g., text-3D alignment) and fail to perform multi-dimensional quality assessment. To address these problems, we first propose a comprehensive benchmark named MATE-3D. The benchmark contains eight well-designed prompt categories that cover single and multiple object generation, resulting in 1,280 generated textured meshes. We have conducted a large-scale subjective experiment from four different evaluation dimensions and collected 107,520 annotations, followed by detailed analyses of the results. Based on MATE-3D, we propose a novel quality evaluator named HyperScore. Utilizing hypernetwork to generate specified mapping functions for each evaluation dimension, our metric can effectively perform multi-dimensional quality assessment. HyperScore presents superior performance over existing metrics on MATE-3D, making it a promising metric for assessing and improving text-to-3D generation. The project is available at https://mate-3d.github.io/.
Abstract:Optical remote sensing and Synthetic Aperture Radar(SAR) remote sensing are crucial for earth observation, offering complementary capabilities. While optical sensors provide high-quality images, they are limited by weather and lighting conditions. In contrast, SAR sensors can operate effectively under adverse conditions. This letter proposes a GAN-based SAR-to-optical image translation method named Seg-CycleGAN, designed to enhance the accuracy of ship target translation by leveraging semantic information from a pre-trained semantic segmentation model. Our method utilizes the downstream task of ship target semantic segmentation to guide the training of image translation network, improving the quality of output Optical-styled images. The potential of foundation-model-annotated datasets in SAR-to-optical translation tasks is revealed. This work suggests broader research and applications for downstream-task-guided frameworks. The code will be available at https://github.com/NPULHH/
Abstract:Recent years have witnessed the success of the deep learning-based technique in research of no-reference point cloud quality assessment (NR-PCQA). For a more accurate quality prediction, many previous studies have attempted to capture global and local feature in a bottom-up manner, but ignored the interaction and promotion between them. To solve this problem, we propose a novel asynchronous feedback network (AFNet). Motivated by human visual perception mechanisms, AFNet employs a dual-branch structure to deal with global and local feature, simulating the left and right hemispheres of the human brain, and constructs a feedback module between them. Specifically, the input point clouds are first fed into a transformer-based global encoder to generate the attention maps that highlight these semantically rich regions, followed by being merged into the global feature. Then, we utilize the generated attention maps to perform dynamic convolution for different semantic regions and obtain the local feature. Finally, a coarse-to-fine strategy is adopted to merge the two features into the final quality score. We conduct comprehensive experiments on three datasets and achieve superior performance over the state-of-the-art approaches on all of these datasets. The code will be available at https://github.com/zhangyujie-1998/AFNet.
Abstract:Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references. Most of the existing FR-PCQA metrics ignore the fact that the human visual system (HVS) dynamically tackles visual information according to different distortion levels (i.e., distortion detection for high-quality samples and appearance perception for low-quality samples) and measure point cloud quality using unified features. To bridge the gap, in this paper, we propose a perception-guided hybrid metric (PHM) that adaptively leverages two visual strategies with respect to distortion degree to predict point cloud quality: to measure visible difference in high-quality samples, PHM takes into account the masking effect and employs texture complexity as an effective compensatory factor for absolute difference; on the other hand, PHM leverages spectral graph theory to evaluate appearance degradation in low-quality samples. Variations in geometric signals on graphs and changes in the spectral graph wavelet coefficients are utilized to characterize geometry and texture appearance degradation, respectively. Finally, the results obtained from the two components are combined in a non-linear method to produce an overall quality score of the tested point cloud. The results of the experiment on five independent databases show that PHM achieves state-of-the-art (SOTA) performance and offers significant performance improvement in multiple distortion environments. The code is publicly available at https://github.com/zhangyujie-1998/PHM.
Abstract:A novel dual-band reconfigurable intelligent surface (DBI-RIS) design that combines the functionalities of millimeter-wave (mmWave) and sub-6 GHz bands within a single aperture is proposed. This design aims to bridge the gap between current single-band reconfigurable intelligent surfaces (RISs) and wireless systems utilizing sub-6 GHz and mmWave bands that require RIS with independently reconfigurable dual-band operation. The mmWave element is realized by a double-layer patch antenna loaded with 1-bit phase shifters, providing two reconfigurable states. An 8x8 mmWave element array is selectively interconnected using three RF switches to form a reconfigurable sub-6 GHz element at 3.5 GHz. A suspended electromagnetic band gap (EBG) structure is proposed to suppress surface waves and ensure sufficient geometric space for the phase shifter and control networks in the mmWave element. A low-cost planar spiral inductor (PSI) is carefully optimized to connect mmWave elements, enabling the sub-6 GHz function without affecting mmWave operation. Finally, prototypes of the DBI-RIS are fabricated, and experimental verification is conducted using two separate measurement testbeds. The fabricated sub-6 GHz RIS successfully achieves beam steering within the range of -35 to 35 degrees for DBI-RIS with 4x4 sub-6 GHz elements, while the mmWave RIS demonstrates beam steering between -30 to 30 degrees for DBI-RIS with 8x8 mmWave elements, and have good agreement with simulation results.
Abstract:Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data. Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks, where adversaries poison the local training data of a subset of clients using a backdoor trigger, aiming to make the aggregated model produce malicious results when the same backdoor condition is met by an inference-time input. Existing backdoor attacks in FL suffer from common deficiencies: fixed trigger patterns and reliance on the assistance of model poisoning. State-of-the-art defenses based on Byzantine-robust aggregation exhibit a good defense performance on these attacks because of the significant divergence between malicious and benign model updates. To effectively conceal malicious model updates among benign ones, we propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger, making backdoor data have minimal effect on model updates. We provide theoretical justifications for DPOT's attacking principle and display experimental results showing that DPOT, via only a data-poisoning attack, effectively undermines state-of-the-art defenses and outperforms existing backdoor attack techniques on various datasets.
Abstract:No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference, which have achieved tremendous improvements due to the utilization of deep neural networks. However, learning-based NR-PCQA methods suffer from the scarcity of labeled data and usually perform suboptimally in terms of generalization. To solve the problem, we propose a novel contrastive pre-training framework tailored for PCQA (CoPA), which enables the pre-trained model to learn quality-aware representations from unlabeled data. To obtain anchors in the representation space, we project point clouds with different distortions into images and randomly mix their local patches to form mixed images with multiple distortions. Utilizing the generated anchors, we constrain the pre-training process via a quality-aware contrastive loss following the philosophy that perceptual quality is closely related to both content and distortion. Furthermore, in the model fine-tuning stage, we propose a semantic-guided multi-view fusion module to effectively integrate the features of projected images from multiple perspectives. Extensive experiments show that our method outperforms the state-of-the-art PCQA methods on popular benchmarks. Further investigations demonstrate that CoPA can also benefit existing learning-based PCQA models.
Abstract:No-reference point cloud quality assessment (NR-PCQA) aims to automatically predict the perceptual quality of point clouds without reference, which has achieved remarkable performance due to the utilization of deep learning-based models. However, these data-driven models suffer from the scarcity of labeled data and perform unsatisfactorily in cross-dataset evaluations. To address this problem, we propose a self-supervised pre-training framework using masked autoencoders (PAME) to help the model learn useful representations without labels. Specifically, after projecting point clouds into images, our PAME employs dual-branch autoencoders, reconstructing masked patches from distorted images into the original patches within reference and distorted images. In this manner, the two branches can separately learn content-aware features and distortion-aware features from the projected images. Furthermore, in the model fine-tuning stage, the learned content-aware features serve as a guide to fuse the point cloud quality features extracted from different perspectives. Extensive experiments show that our method outperforms the state-of-the-art NR-PCQA methods on popular benchmarks in terms of prediction accuracy and generalizability.